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Abstract

This paper discusses the synchronization issues that arise when transaction facilities arc extended for usC with
shared abstract data types. A formnalism for specifying L'he concurrency properties of such typcs is developed,
based on (lependency relations that are defined in tEcn; of an abstract type's operations. The formalism
requires that the specification of an abstract type state whether or not cycles involving these relations should
be allowed to form. Directories and two types oil queues are specified using the technique, and the degree to
which concurrency is restricted by type-specific properties is exemplified. The paper also discusses how tie
specifications of types interact to determine the behavior of transactions. A locking technique is described
that per-nits implementations to make use of type-specific information to approach the limits of concurrency.
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1 Introduction

'ransactions facilities, as promided in many database systems, permit the definition of transactions

containing operations that read and write the database and that interact with the external world. The

transaction facility of the database systein guarantees that each invocation of a transaction will exccute at most

once (i.e., either commit or abor.) and will be isolated from the deleterious effects of all concurrently

executing transactions. lo make hese guarantecs, the transaction facility manages transaction

svnchronization. recovery, and, if necessary. inter-site coordination. 'Oay pap-rs haVe heen V ri ten about

transactions in tie context of both distributed and non-distributed databases [Bernstein 81, E-swaran 76, Gray

SO, I ;;mpson SI I inds,-' "7(].

Thcre are a number of ways in which transaction facilities could be extended to simplify the construction of

many types of reliable distributed programs. Extensions that allow a wider variety of operations to be

included in a transaction would thcilitate manipulation of shared objects other than a database. Extensions

that permit transaction nesting would facilitate more flexible program organizations, as would extensions

allowing ;ome form of inter- transaction communication of uncommitted data. Although the synchronization,

recovery, and inter-site coordination mechanisms needed to support database transaction facilities are

reasonably well understood, these mechanisms require substantial modification to support such extensions.

For example, they must be made compatible with the abstract data tpe model and with general

implementation techniques such as dynamic storage allocation.

Lomet [Lomet 77] considered some of the problems encountered in developing general-purpose transaction

facilities, but more recently, much of the research in this area has been done at MIT. Moss and Reed have

discussed nested transactions and other relate,. .yv,'ms issues [Moss 81, Reed 78]. As part of the Argus

project, extensions to CLU have been propose, ,t incorporate primitives for supporting transactions

[Liskov 82a, Liskov 82b]. Additionally, Weihl has considered transactions that contain calls on shared

abstract types such as sets and message queues, and has discussed their implementation [Weih 83a, Weihl

83b]. Transactions will also be available in the Clouds distributed operating system [Allchin 831.

This paper focuses on one important issue that arises when extending transaction facilities: the

synchronization of operations on shared abstract data types such as directories, stacks, and queues. After a

presentation of background material in the following section, Section 3 introduces some tools and notation for

specifying shared abstract types. Section 4 describes three particular data types and uses the tools to specify

how operations on these types can interact under conditions of concurrent access by multiple transactions.

The specifications that are developed make explicit use of type-specific properties, and it is shown how this

approach permits greater concurrency than standard techniques that do not use such information. Section
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5 discusses 11OW die spe-ifications of individual types interact to deteimine global properties of groups of

transactions. Section 6 proposes an extensible approach to locking that can be used for synchroniziltion in

implementations intended to mect thcse specifications. Finally. Section 7 summarizes tc major points oftdlis

paper and co'icludes with a brief discussion of other considerations in the implementation of user-defined,

shared abstract data types.

2 Background

Transactions aid in maintaining arbitr,ry application-dependent consistency constrain/s on stored data. The

constraints must be maintained despite failures and without unnecessarily restricting the concurrent

processing of application requests.

In de database literature, transactions are defined as arbitrary collections of database operations bracketed

by two markers: Begin 7)aJsaction and EndTransaction. A transaction that completes successfully commits,

an incomplete transaction can terminate unsuccessfully at any time by aborting. Transactions have the

following special properties:

1. Either all or none of a transaction's operations arc performed. This property is usually called
failure atomicity.

2. If a transaction completes successfully, the effects of its operations will never subsequently be lost.
This property is usually called permanence.

3. If a transaction aborts, no other transactions will be forced to abort as a consequence. Cascading
aborts are not permitted.

4. If several transactions execute concurrently, they affect the database as if they were executed
serially in some order. This property is usually called serializability.

Transactions lessen the burden on application programmers by simplifying the treatment of failures and

concurrency. Failure atomicity makes certain that when a transaction is interrupted by a failure, its partial

results are undone. Programmers are therefore free to violate consistency constraints temporarily during the

execution of a transaction. Serializability ensures that other concurrently executing transactions cannot

observe these inconsistencies. Permanence and prevention of cascading aborts limit the amount of effort

required to recover from a failure. Transaction models that do not prohibit cascading aborts are possible, but

we do not consider them.

Our model for using transactions in distributed systems differs from this traditional model in several ways.

The most important difference is that we incorporate the concept of an abstract data type. That is,

information is stored in typed objects and manipulated only by operations that are specific to a particular
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obect t pC. I he useIs of a typc arc given a spccificalion that describes the effect of Lach operation on the

stored data, i,,d new abstract types cun be implemented using existing ones. The details of how objects are

represented and how the operations are carried out are known only to a type's implementor. Abstract data

types grew OUL of die class construct in Simula [l)ahl 72], and are supported in many other programming

languages including CLIU [I.iskov 771, Alphard [Wulf 76], and Ada [Dept. of Defense 82], as well as in

operating systems, e.g. i- vdra [Wulf 741. In our system model, transactions arc composed of operations on

objects that are instincc, of abstract types. Of particular interest are those objects that are not local to a single

transaction. These are instances of shared abstract types.

We assume that the facilities for implementing shared abstract types and for coordinating the e,,,' 'tie. of

transactions that operate on them are provided by a basic system layer that executes at each node of the

system. This transaction kernel exports primitives for synchronization. recovery, deadlock management, and

inter-site communication. In some ways, a transaction kernel is similar to the RSS of System R [Gray 81]. A

transaction kernel, however, is intended to run on a bare machine and must supply primitives useful for

implementing arbitrary data types. whereas the RSS has the assistance of an underlying operating system and

only provides specialized primitives tailored for manipulating a database.

Another difference between our system model and the traditional transaction model is that we do not

necessarily require that transactions appear to execute serially. Serializability ensures that if transactions work

correctly in the absence of concurrency, any interleaving of their operations that is allowed by the system will

not affect their correctness. But sometimes, serializability is too strong a property, and requiring it restricts

concurrency unnecessarily. For example, it is usually unnecessary for two letters mailed together and

addressed identically to appear in their recipient's mailbox together. However, serializability is violated if the

letters do not arrive contiguously, because there is no longer the appearance that the sender has executed

without interference from other senders. Thus, it may be desirable for some shared abstract types to allow

limited non-serializable execution of transactions. This idea has also been investigated by Garcia-Molina

[Garcia-Molina 83] and Sha et al. [Sha 83].

Serializability guarantees that an ordering can be defined on a group of transactions. If the transactions

share some common objects, serializability requires that these objects be visited in the same order by all the

transactions in the group. In the next section, a more general ordering property of transactions is defined, of

which serializability is a special case. We will show that it is possible to prove that transactions work correctly

in the presence of concurrency, even if they do not appear to execute serially.

In order to maintain the special properties of transactions in our model, the operations on shared abstract

types that compose them must meet certain requirements. To guarantee the failure atomicity of transactions,
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it must be pos'ible to undo any Operation upon transaction abort. 'heretoic. an uado operation ifust be

provided for each operation on a shared abstract type. Recovery is not the main concern of this paper, and we

will be considering undo operations only as they pertain to synchronization issues. Further discussion of

recovery issues can be found in a related paper [Schwarz 83].

Operations on shared abstract types must also meet three synchronization requirements:

1. Operations must be protected from anomalies that could be caused by other concurrently
execruting operations on the same object. Freedom from these concurrency anomalies C1nsLres that
an invocation of an operation on a shared object is not affected by other concurrent operation
invocations. [his is the same property that monitors provide [H-oare 74].

2. [o preclude the possibility of cascading aborts, operations on shared objects must riot be able to
observe information that might change if an uncommitted transaction were to abort. This may
necessitate delaying the execution of operations on behalf of some transactions until other
transactions complete, either successfully or unsuccessfully.

3. When a group of transactions invokes operations on shared objects, the operations may only be
interleaved in ways that preserve serializability or some weaker ordering property of the group of
transactions. The synchronization needed to control interleaving cannot be localized to individual
shared objects, but rather requires cooperation among all the objects shared by the transactions.

Traditional methods for synchronizing access to an instance of a shared abstract type are designed solely to

ensure the first goal: correctness of individual operations on an object. This paper is concerned with the

second and third goals. We examine the problem of specifying the synchronization needed to achieve them,

as well as the support facilities that the trausaction kernel must provide to implementors of shared abstract

types.

3 Dependencies: A Tool for Reasoning About Concurrent Transactions

This section inuoduces a theory that can be used to reason about the behavior of concurrent transactions. It
allows the standard definition of serializability to be recast in terms of shared abstract types, and provides a

convenient way of expressing other ordering properties. The theory is also useful in understanding cascading

aborts.

3.1 Schedules

Schedules [Eswaran 76, Gray 75] can be used to model the behavior of a group of concurrent transactions.

Informally, a schedule is a sequence of <transaction, operation> pairs that represents the order in which the

component operations of concurrent transactions are interleaved. Schedules are also known as

histories[Papadimitriou 771 and logs[Bernstein 79]. In some of the traditional database literature, the

operations in schedules are assumed to be arbitrary; no semantic knowledge about them is available [Eswaran

761. In this case. a schedule is merely an ordered list of transactions and the objects they touch:
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TI: 01

T' 102
T2 :0 2
1 :0 2

In other work. operations are characterized as Read(R) or Write(W) [Gray 751, in which case the schedule

includes that semantic information:
T1: R(01 )
T2 : R(0 1 )
T2  W(02 )
TI: R(O2)

To analyze transactions that contain operations on specific shared abstract types, we will consider schedules

in which these operations are characterized explicitly. For example, a schedule may contain operations to

enter an clement on a queue or to insert an entry into a directory. We call these abstract schedules, because

they describe the order in which operations affect objects, regardless of any reordering that might be done by

their implementation. 1 Given the initial state of a set of objects, an abstract schedule of operations on these

objects, and specifications for the operations in the schedule, the result of each operation and the final state of

the objects can be deduced. :or instance, consider the following abstract schedule, which is composed of

operations on Q, a shared object of type FIFO Queue. The operations QEnter and QRemove respectively

append an element to the tail of a FIFO Queue and remove one from it's head. Assume Q to be empty

initially.
TI: QEnter(Q, X)
T : QEnter(Q, Y)
T3: QReinove(Q)

From this abstract schedule and the initial contents of the Queue, one can deduce the state of Q at any point

in the schedule. Thus one may conclude that the QRemove operation returns X, and that only Y remains on

the Queue at the end of the schedule.

3.2 Dependencies and Consistency

By examining an abstract schedule, it is possible to determine what dependencies exist among the

transactions in the schedule. The notation D: Ti:X --o T J:Y will be used to represent the dependency D

formed when transaction T, performs operation X and transaction T subsequently performs operation Y on

some common object 0. The object, transaction, or dependency identifiers may be omitted when they are

unimportant. The set of ordered pairs {(Ti, T.)} for which there exist X, Y and 0 such that D: Ti:X -0 T :Y

forms a relation, denoted < If T <DTj T, precedes T. and T. depends on Ti, under the dependency D.
D' iDJ J

ln Section 4.4 we will define a second kind of schedule, the invocation schedule, which reflects the concurrency of specific
implementations.
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Examples of dependencies and their corresponding relations can be drawn from traditional database

systems. For instance, consider a system in which no semantic knowledge, either about entire transactions or

about their component operations, is aailable to the concurrency control mechanism. The only requirement

is that each individual transaction be correct in itself: it must transform a consistent initial state of the

database to a consistent final state. Under these conditions, only serializable abstract schedules can be

guaranteed to preerve the correctness of indiv idual transactions.

Since all operations are indistinguishable, only one possible dependency 1) can be defined: T 1 <tD T2 if T1

performs any operation on an object later operated on by 12. Now, consider <*tD the transitive closure of<D'

A schedule is Ovderable with respect to {<D} iff <, is a partial order. In other words, there are no cycles of

the form T1 <D T2 <D"<t) Tn <) TI" In general, a schedule is orderable with respect to S, where S is a set of

dependency relations, iff each of the relations in S have a transitive closure that is a partial order. The

relations in S are referred to as proscribed relations, and we will use orderability with respect to a set of

proscribed dependency relations to describe ordering properties of groups of transactions. Abstract schedules

that are ordcrable with respect to a specified set of proscribed relations will be called consisient abstract

schedules.

It can be shown that orderability with respect to {<,} is equivalent to serializability [Eswaran 76]. Given a

schedule orderable with respect to {<D}, a transaction '1, and the set 0 of objects to which T refers, every

other transaction that refers co an object in 0 can unambiguously be said either to precede T or to follow

T. Thus T depends on a well-defined set of transactions that precede it, and a well-defined set of transactions

depend on T. Each transaction sees the consistent database state lett by those transactions that precede it, and

(by assumption) leaves a consistent state for those that follow. The set of schedules for which < is a partial

order constitutes the set of consistent abstract schedules for a system that employs no semantic knowledge.

The scheme described above prevents cycles in the most general possiblc dpendnc.c, -.!aticn, hence it

maximally restricts concurrency. Bq, considering the semantics of operations on objects, it is possible to

identify some dependency relations for which cycles may be allowed to form. For example, consider a

database with a Read/Write concurrency control. Such systems recognize two types of operations on objects:

Read(R) and Write(W). Thus there are 4 possible dependencies between a pair of transactions that access a

common object:

" D : Ti R 0 T R. Ti reads an object subsequently read by T.

" D2: T:R 0 T :W. T, 'cads an object subsequently modified by T .

" D3: Ti:W -0 T iR, T, modifies an object subsequently read by T .
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* I): 1" -- '1 :W. I modifies ,11i ,)ject LiUbsCqLCntly modified by I'.r 0 j,

The earlier schone . by not distinguish1ing, betweCe, theC dcpc!'d.,encies, prevents ccles from forming in the

dependency relation <D) which is the union of ali four indixdual relations. B3y contrast. Read/Write

concurrcnc, controls take into account the fact that R -- R dependencies cannot influence s.ystem beha ior.

That is. given a pair of transactions. 1* and 'I,, and an atbslract schedule in which hoth T1 and T, perform a

Read on a shared object. the semantics of Read operations ensure that neither T 1, '2 nor any other
transaction in the schedule can determine whether T1 < I or T 2 . I . Since th,e dependencies cannot

be nbserxed, they cannot compromise scriaiz.abilit., nor can they affect the outcome of transactions. We call

dependencies meeting this criterion msigmjn'aui. Korth has also noted that xw kcn operations are

commutative, their ordering does not affect serializabilirt [Korth 83].

For the Read/Write case, the necessar,' condition for seriali/abilitv can be rcestated as follows in terms of

dcpendenc relations: a schedule is seriali.,ablc if it is orderable with respect to f<D I).D [Gray 751. By
2 4

allowing multiple readers, Read/Write schemes permit the formation of cycles in the <D dependency

relation, and in relations that include <D, while prcventing cycles ir, the relation that is the union of( D2' < D

and < For example, consider the following schedules, which have identical effects on the system state:

T : R(O,) T : R(01)
T2: R(01 ) T: R(O)
TI: W(01 ) T : W(01 )

In the first schedule, T, <D T2 and 12 <D T1. Hence, there is a ,-,cle in the relation <DuD2 although

<D2 D3 uD4 is cycle-free. In the second schedule, the first two steps are rever ed and neither cycle is present.

On the other hand, the following two schedules are not necessarily identical in effect:
T,: R(0 1 )  T W(O
T : w(o1) 

T 2 R(O1 )

T : W(01 ) T I W(01 )

In this case, the first schedule is not serializable because "1 <D2 T2 and T2 <D4 T1, thus forming a cycle in the

relation <D2aD 4' which is a sub-relation of< D(cD3jD4. T1 observes 01 before it is written by T2, but the final
state of 01 reflects the Write of T1 rather than T , implying that T1 ran after T2. The second schedule has no

cycle and is serializable.

In summary, orderability with rcspect to a set of proscribed dependency relations provides a precise way to

characterize consistent schedules. For a concurrency control that enforces serializability with no semantic

knowledge at all about operations, the set of proscribed relations must contain <D, which is equivalent to the

union of every possible dependency relation. For a Read/Write database scheme, the set contains the

R-W u W-.R u w-w rclation. When type-specific semantics are considered, type-specific depeihdency



relationls ,e dctincd for each type. In Section 4, dependencies arc used to dcfinc iwerlcaving

tc'!X"iiulio for \arious ah,,tract typcs. Thes specifications prox idc the information needed to dctcrmine

ho\4 an i[ud L' dat t.I pcan contribtte tt0Ward maintaining a global ordering property such as :',riaii/ability.

It a . pe:ification guarantees oidcra-iIlity with respect to the ulion ofall significant dependency rlaions for a

given type, then it is strong cOugh to permit seriali/ability. In general, ho\Aexcr. more concurrency can be

oht, ied \Mhen iml. *eakcr ordering properties are guaranteed. The ,*at1 in ,,,iich the interleaving

spccitcat!ons o f1Utlp1, types interact to preserve ordering properties is di;c~lssed in Section 5.

3.3 Dependencies and Cascading Aborts

D)ependencies are also useful in understanding cascading aborts. A cascading abort is po ible v hen a

depcndenc\ forms between two transactions, the First of which is uncommitted. An abort by this

uncommitted transaction may cascade to thosc that depend on it. Whether or not a cascade actually must

uccur depends on the exact type of dependency inolved, and the properties of the object being acted upon.

[or example. consider the four general dependency relations that arise in Read/Write database systems.

R - R dcpcidcace .re insignificant, and can never cause cascading aborts. This is analogous to the role of

these dependencies in detenining orderability. Likewise. R , W and W , W dependencies need not cause

cascading aborts. occause in both cases the outcome of the second transaction does not depend on data

modificd b,. the first, By cootrast. W - R dependencies represent a transfer of information bet-,een the two

transactions. !n the absence of any additional semantic information, it must be assumed that an abort of the

first transaction .ill affect the outcome of the second, which must therefore also be aborted.

Once the dependencies that could lead to cascading aborts have been identified, their formation must be

controlled. Stated in terms of abstract schedules: starting from the first of the two operations that form the

dependency there must be no overlapping of the two transactions in the schedule, with the prior transaction

in the dependency relation completing first. Such schedules will be called cascade-free. Note that some

consistent schedules may not be cascade-free, and vice-versa.

4 Specification of Shared Abstract Types

This section focuses on the typed operations that make up transactions and discusses how to specify their

local synchronization properties. The traditional specification of an abstract type describes the behavior of

the type's operations in terms of preconditions, postconditions, and an invariant. This specification must be

augmented in several ways to complete the description of a shared abstract type in our model. In the first

place, the undo operation corresponding to each regular operation must be specified in terms of

2It ray be neccessar to control the formation of these dependencics anyway, if an insufficiently flexible recovery strategy is used.
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pruconditiois. poStcOnditions and the in ariant. Specification of the undo operations themselves is not

conidred fl;rtller in dis paper. It is important to iote. how\Aever, that the set of Consistent abstract schedules

defined Lv toe in erlei\ ng specific~ation for a type also implicitly includes schCdulcs in which undo

operations aie inserted at all possible points after an operation has been performed but prior to the end of the

inokinc transaction. Ihis reflects the assumption that it must be possihle to Undo any operation prior to

tra usa-l on co0imrn itmen t. As will he she n in Sectiom 4.3. this is especialy important fo(r types that do not

attempt to enforce seriali/ahility of transactions.

[1hc ,pccification of a shared abstract type must also include a description of how operations on behalf of

mUltiple transactions can be intcrlcavcd. [his wu'r/cavilg spcjiJcaiion can be used by application

programmers to describe their needs to prospective type implementors or to evaluate the suiubility of existing

t pes for their applications. The specification of a shared abstract type must also list rhose dependencies that

\ ill be controlled to prent cascading aborts. [his ;art of the specificaition is used mainly by the type's

implementor.

When specifying how operations on a shared object may interact, the amount of concurrency that can be

permitted depends in part on how much detailed knowledge is available concerning the semantics of the

operations [Kung 79]. We have shown how concurrency controls that distinguish those operations that only

observe the state of an object ("Reads") from those that modi y it ("Writes") can achieve greater concurrency

than protocols not making this distinction. To increase concurrency further while still providing

serializabilty, one can take advantage of mo!, semantic knowledge about the operations being

performed [Korth 83]. Section 4.1 illustrates how this is done in specifying Directories, using the concepts

and notation of the lst section.

When enough concurrency cannot bc obtained even after fully exploiting the semantics of the operations on

a type, it is necessary to dispense with serializability and substitute orderability with respect to some weaker

set of proscribed dependency relations. Sections 4.2 and 4.3 illustrate this by comparing a serializable Queue

t)pc with a variation that preserves a weaker ordering property.

Finally, Section 4.4 discusses how implementations may reorder operations to obtain even more

concurrency, and the steps that type implementors must take to demonstrate the correctness of an

implementation.
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4.1 Directories

As a first i..,ample, consider a Dire.tory data type dat is intended to provide a mapping between text strings

and capabilities for arbitrary objects. l he u,ual operations arc provided:

" I)irlnsert(dir, str. capa): inserts capa into Directory dir with key string str. Returns ok or duplicate
key. The undo operation for l)irinsert removes the inserted entry, if the insertion was successful.

" l)irl)elete(dirstr): deletes the capabilit stored with key string str froin dir. Returns ok or not
found. The undo operation for IDirl)elete restores the deleted capability, if the de!ction was
successful.

" l)irl.ookup(dir, str): searches for a capahility in dir with key string str. RCtUrns the capability capa
or not found. [he undo operation is null, becaus, Dirl.ookup does not modify the Directory.

" Dirflump(dir): returns a vector of<str,capa> pairs with the complete contents of the Directory dir.
The Undo operation for l)irflump is null.

Suppose one wishes to specify the Directory type so as to permit serialization of transactions that include

operations on Directories. One approach would be to model each l)irfnsert or DirDelete operation as a Read

operation followed by a Write operation. and to model each DirLookup ot Dirl)unp operation as a Read

operation. The Directory type could then be specified using the Read/Write dependency relations discussed

previously.

The difficulty with using such limited semantic information is that concurrency is restricted unnecessarily.

For example, suppose Directories have been implemented using a standard two-phase Read/Write locking

mechanism. Consider the operation DirLookup(dir, "Foo"), which will be blocked trying to obtain a Read

lock if another transaction has performed Dirl)elete(dir, "Fum") and holds a Write lock on the Directory

object. The outcome of DirLookup(dir, "Foo") does not depend in any way on the eventual outcome of

DirDelete(dir, "Fum") (which may later be aborted), or vice-versa, so this blocking is unnecessary. Because

Dirl)elete(dir, "Fum") may be part of an arbitrarily long transaction, the Write lock may be held for a long

time and severely degrade performance.

The unnecessary loss of concurrency in this example is not the fault of this particular implementation. It is

caused by the lack of semantic information in the Directory specification. By using more knowledge about

the operations, this problem can be alleviated. Instead of expressing the interleaving specification for this

type in terms of Read and Write operations, the type-specific Directory operations can be employed to define

dependencies and the interleaving specifications can be expressed in terms of these type-specific

dependencies.

To keep the number of dependencies to a minimum, the operations for the Directory data type will be

divided into three groups:



e I hose that modi f I particular cntLy ill the Directory. I)irlusert and I)irl)clete operations that
succeed are in this class. These are ,Modify (M) operations.

* Those that observe the presence. absence, or contents of a particular entry in the Directory.
Dirl.ookup is in this class, as are I)irlisert and l)irlhte operations that fail. "l'h:le are Lookup
(I) operations.

* Those that ohserve properties of tile )irectory that cannot be isolated to an individual entry.
l)irl)ump is the on!ly operation in this class that we have defined: an operation that returned the
number of entries in the l)irectory would also be in this class. These are l)ump (I)) operations.

Note that in some cases operations that fail are distinguished from those that succeed. In addition to the

operations and their outcomes, the dependencies also take into account data supplied to the operations as

arguments or otherwise specific to the particular object acted upon. In the following list of dependencies, the

symbols a and a' represent distinct key string arguments to Directory operations.

The complete set of dependencies for this type is:

" D1: T :M(a) - T.:M (a'). T modifies an entry with key string c,, and T. subsequently modifies an
entry with a different key string, a'.

" D2 : T.:M(a) -- :'M(a). T. modifies an entry with key string a, and T. subsequently modifies
the same entry.

" D3 : T :M(a) - T :L(a'). Ti modifies an entry with key string a, and T subsequently observes an
entry with a different key string, a'.

" D4 : T:M(a) - T.:L(a). Ti modifies an entry with key string a, and T subsequently observes the
4 1J iJ

same entry.

* D5: Ti:L(a) Tb T:L(a'). Ti observes an entry with key stnng a, and T subsequently observes an
entry with a different key string a'.

" D6: Ti:L(a ) -T. :L(a). T, observes an entry with key string a, and T subsequently observes the
same entry.

"D 7 . Ti:L(a) -- T:M (a'). T i observes an entry with key stuing a, and T subsequently modifies an
entry with a different key string a'.

"D: Ti:L(u ) --+ T:M(a). T, observes an entry with key string a, and i subsequently modifies the
same entry.

"D 9 : Ti:D - T:M(a). T, dumps the entire contents of the Directory, and T subsequently
modifies an entry with key string a.

Do10 : TI:D - T:L(a). T i dumps the entire contents of the Directory, an-. T'. subsequently
observes an entry with key string a.
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, ) 1: T.:N(a) -T T.:D. T1 niodifics an enitry with key string a, and Ti subsequently dumps the
entire content:; of thC Directory.

0 1) 12 :l (a) -- 1 :0.. I observes an entry with key string a, and T1i subsequently dumps the
entire contents of & Directory.

* 1)13: T :) --+ 1 :1). Ti dumps the enthe contents of the I)ircctory and "I subsequently dumps the
l)irccto ' as l

This list is long, but it is actually quite simple to derive. There is a family of dependencies for each pair of

operation classes. The key to defining the specific dependencies is die observation that when two operations

refer to different strings, the relationship between the transactions that invoked them is not the same as when

they refer to identical strings. Those families of dependencies for which both operation classes take a string

argument therefore have two members. corresponding to these two cases. The families for which one of the

operation classes is Dump have only a single member. In general, insight into the semantics of a type is

needed to define the set of possible dependencies.

Like the R -- R dependency, many of the Directory dependencies are insignificant and cannot affect the

outcome of transactions. Hence. they may be excluded from the set of proscribed dependencics for this type.

The depe, dencies that may be disregarded are:

" Those for which neither operation in the dependency modifies the Directory object: D6, D10, D12
and D13. These are directly analogous to the R -4 R dependency.

" Those for which the two operations in the dependency refer to different key strings: D1, D3, D5,
and D7.

In terms of the remaining dependencies, the interleaving specification for Directories states that an abstract

schedule involving Directories is consistent if it is orderable with respect to {<D 2 .D4uDeDquD 11. The

abstract Directory thus defined behaves like a collection of associatively-addressed elements, with

serializability preservable independciitly for each element. Transactions containing operations that apply to

the entire Directory, such as DirDump, may also be serialized, as may those that refer to multiple elements or

elements that are not present.

Only two of the Directory dependencies have the potential to cause cascading aborts. These are D4 and

D11. In both cases, the first operation in the dependency modifics an entry and the second operation observes

that modification.
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4.2 FIFO Queues

Similar specifications can be developed for other data types. The -IFO Queue provides an interesting

example. We will only consider two operations:

" QVntcr(queue. eapa): Adds an entry containing the pointer capa wo the end of qucue. The undo
operation for QEnter removes this entry.

" QRcmovc(queue): Removes die entry at the head of queue and returns the pointer capa contained
therein. If queue is empty, the operation is blocked, and waits until queue becomes non-empty.
The undo operation for QReinove restores the entry to the head of queue.

In order to permit serialization of transactions that contain operations on strict FIFO Queues, and to

prevent cascading aborts, numerous properties must be guaranteed. For instance:

" If a transaction adds several entries to a Queue, these entries must appear together and in the same
order at the head of the Queue.

" Any entries added to a Queue by a transaction may not be obscrved by another transaction unless
the first transaction terminates successfully.

" If two transactions each make entries in two Queues, the relative ordering of the entries made by
the two transactions must be the same in both Queues.

It is very easy to destroy these properties if unrestricted interleaving of operations is allowed. For instance,

if QEnter operations from different transactions are interleaved, the entries made by each transaction will not

appear in a block at the head of the Queue.

In defining the dependencies for the Queue type, it is necessary, as it was in the case of Directories, to

distinguish individual elements in the Queue. It is assumed that each element is assigned a unique identifier3

when it is entered on the Queue. The symbols a and a' are used to represent the distinct identifiers of

different elements, and the QEnter and QRcmove operations are abbreviated as E and R respectively. The

complete set of dependencies for Queues is:

SDz: T:E(c,) -O T.:E(a'). T. enters an element a' into the queue Q after T. has previously
entered an element a.

* D2: Ti:E(o) -,Q Tj:R(a'). T removes element a' after Ti entered element a.

* D3: Ti:E() Q T :R(a). T removes the element a that was entered by T.

& eD: T,:R(a) -. T.:E(a'). T. enters element a' after T removed element a.
4 1' Q i J I

3The identifier need not be globally unique, just unique among those generated for the particular Queue object.
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D D5- Ti-R( -)Q V j:R(a'). T i croves element a' after Ti remoed clement c.

In a Read/Writc synchronization scheme, QEnter must be modeled as a Write operation, and QRexnove

must be modeled as a Read followed by a Write. Recall that such a scheme must prevent cycles in the

<R-W u W-R u W-.W dependency relation. In this case, preventing cycles in this general dependency

relation is unnecessarily restrictive. Consider depcndcncy 1)2' which is formed .N hen a transaction removes a

Queue element after another transaction has previously entered a diiferent Queue element. Neither of the

transactions performing the operations can detect their ordering, nor can a third transaction. The same

i'pplies to dependency 1)4, which is tie inverse of 1)2. As was the case for [Directories, concurrency can be

increased by disregarding insignificant dependencies.

To provide a strictly FIFO Queue. one must guarantee that abstract schedules are orderable with respect to

the compound <D I D3 u D5 relation, but cycles may be permitted to form in relations that include 1)2 or 1)4 as

long as this property is not violated. For example, consider the following schedule, in which two transactions

operate on a Queue that initially contains {A, B}:
T : QEnter(Q,X)
T2 : QRernove(Q) returns A
T : QEnter(Q,Y)

At step 2 of this schedule a D2 dependency is form-ed. hence TI <D T2. At step 3. however, a D4 dependency
is formed with T2 <D T1. Clearly a cycle exists in the compound relation <D2uD4. It is easy to create other

examples of consistent abstract schedules that demonstrate a cycle in the basic <D (or <D ) relation, or in a

compound relation formed from D2 (or D4) together with D1 , D3 and D .

Tne dependency relations can also be used to characterize schedules susceptible to cascading abort.

Dependency relation <D is similar to the W --+ W dependency. Since entries made by an aborted transaction

can be transparently removed from the Queue, there is no danger of cascading abort. Relations and <

are more similar to W -. R dependencies. In a D3 dependency, information is transferred between the

transactions in the form of the queue element a, this dependency clearly can cause cascading aborts. A Ds

dependency can also cause cascading aborts, because the removal of an element by the first transaction affects

which element is received by the second transaction.

While this definition of consistency for Queues is an improvement over a Read/Write scheme, it is still very

restrictive of concurrency. It allows at most two transactions, one performing QEnter operations and one

performing QRemove operations, to access a Queue concurrently. Unlike the Directory, the Queue is

intended to preserve a particular ordering of the elements contained in it. A system based on serializable

transactions guarantees that transactions can be placed in some order: by enforcing a particular order, data

types such as queues (and stacks) restrict concurrency.
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4.3 Queues Allowing Greater Concurrency

The preceding examples show how thc use of semantic knowledge about operations on a shared abstract

type permits increased concurrency. Once such knowledge is incorporated, the limiting factor in permitting

concurrency beccmes knowledge about the consistency constraints that the operations in a transaction

attempt to maintain [KUng 791. This knowledge concerns the semantics of groups of operations rather than

individua Ones. For example, a consistency constraint might state that every Queue entry of type A is

immediately !ollowed by one of type 1. The potential for such constraints was the cause of the concurrency

limitations observed above.

If it is possible to restrict the consistency constraints that a programmer is free to require, types

guaranteeing ordering properties weaker than serializability may be acceptable. This may permit further

increases in concurrency. A variation of the queue type can be used to demonstrate this.

One of the most common uses for a queue is to provide a buffer between activities that produce and

consume work. Frequently, the exact ordering of entries on the queue is not important. What is crucial is

that entries put on the rear of the queue do not languish in the queue forever; they should reach the head of

the queue "fairly" with respect to other entries made at about the same time. A data type having this

non-starvation property can be defined: the Weaklb-FI.O Queue (WQueue for short). A similar type, the

Semi-Queue, has been defined by Weihl [Weihl 83b].

The operations on WQueues and their corresponding undo operations are similar to those for Queues, but

the interleaving specification for WQueues allows more concurrency. The dependencies for the WQueue

type are the same as for the strict Queue. However, where the strict Queue required that consistent abstract

schedules be orderable with respect to 1<DUD 3uD5}' the WQueue permits cycles to occur in all the

dependency relations save one: . By allowing cycles in <D1, the interleaving of entries by multiple

transactions becomes oossible. Similarly, removing D5 from the set of proscribed dependency relations

permits WQRemove operations to be interleaved.

To take full advantage of the greater concurrency allowed by this interleaving specification, the semantics of

WQRemove differ slightly from those of QRemove. If the transaction that inserted the headmost entry in the

queue has not committed, that entry cannot be removed without risking the possibility of a cascading abort.

Instead, WQllemove scans the WQueue and removes the headmost entry for which the inserting transaction

has committed. If no such element can be found, any elements inserted by the transaction doing the

WQRemove become eligible for removal. If neither a committed entry nor one inserted by the same

transaction is available, the operation is blocked until an inserting transaction commits.
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Modifying dhe semantics of WQRemove in this way does not dcstroy ic fairness properties of the WQueue.

No entry will remain in the WQucC forever if:

I. Thc transaction that entcrcd it commits in a finite amount of time.

2. Transactions that remove it tcrminate after a finite amount of time.

3. Only a finite number of transactions remove the entry and then abort.

The behavior of the WQucue is best illustratcd by example. In what follows, a WQueuc is represented by a

sequence of letters. with the left end of the sequence being the head of the WQueuC. Lower case italic letters

(a) are used to denote entries for which the NQl.nter operation has not committed (i.e. the transaction that

performed WQEnter is incomplete). Upper case bold letters (A) are used to represent entries that have not

been removed and for which the entering transaction has committed. Upper case italic letters are used for

entries that have been removed by an uncommitted VQRenioe. Superscripts on entries affected by

uncommitted operations identify the transaction that performed the operation.

Assume that the WQueue is initially empty. If transactions Ti and T2 perform WQEnter(WQ, a) and
WQEnter(WQ. b) respectively, the WQueue's state becomes:

{a, 52}

Since cycles in <D are permitted, T, may also add another entry, yielding:

{Ja, b2 , c}1

If'l' 1 and T2 both commit, the state becomes:

{A, B, C}
Note that the serializability of T1 and T2 has not been preserved. Now suppose that T3 performs WQRemove

and another transaction, T4, removes two more elements:

{A , C4,'}

IfT3 now aborts and T4 commits, the final state becomes:
{A}

In this case, A and C have effectively been reversed, even though they were inserted initially by the same

transaction! This example illustrates an important difference between shared abstract types that attempt to

preserve serializability and those that do not: when a type permits non-serial execution of transactions,

invoking an operation and subsequently aborting it is not necessarily equivalent to not invoking the operation

at all. While we do not explicitly consider the undo operations in defining dependencies or interleaving

specifications, the underlying assumption that aborts can occur at any time prior to commit implies that undo

operations can be inserted at any point in a schedule between the invocation of an operation and the time at

which the invoking transaction commits.
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Another example indicates what happens when an uncommitted entry reaches tie head of the Queue.

Suppose the initial state is:

{aS, b}

IfT 6 commits but T5 remains incomplete, the state becomes:

f, 5 , BI

Irfr, rl:IeuCS Z11 elcnCi t ait tils time, B will be returned, leaving:

ra.5}

after T7 commits. On the other hand, ifT 5 commits after ""6, but before the remove by T7 A will be returned

even though its insertion was committed after B's.

To summarize the comparison between the WQueue and the ordinary Queue, note that two properties of

the regular Queue have been sacrificed. First, strict FIFO ordering of entries is not guaranteed, because

aborting WQRenovc operations can reorder them. Second, transactions that operate on WQucucs are not

necessarily serializable with respect to all transactions in the system. Some other crucial properties, however,

are preserved. The WQueue will not starve any entry, and it enforces an ordering of those transactions that

communicate through access to a common elemcnt of the queue. This is ensured by orderability with respect

to {<D3 1. These modifications greatly increase concurrency, while still providing a data type that is us;ful in

many situations.

4.4 Proving the Coriectness of Type Implementations

Whereas the user of a type may employ the specified properties of abstract schedules (along with the rest of

the type's specification) to reason about the correctness of transactions, the implementor of a type must prove

the correctness of an implementation given the order in which operations are actually invoked. Real

implementations may reorder the operations on an object to improve concurrency without changing the type's

interleaving specification. Consider an implementation of the Queue type in which elements to be entered by

a transaction are first collected in a transaction-local cache and entered as a block at end-of-transaction. This

implementation allows any number of transactions to invoke the QEnter operation simultaneously, provided
care is taken to serialize correctly transactions involving multiple Queues. By actually performing the

insertions as a block, this implementation effectively reorders the individual QEnter operations to preserve
consistency. It is possible to reorder QEnter operations in this way because QEnter does not return any

information to its caller. Formation of any dependencies that might result from its invocation can therefore

be postponed. The ultimate ordering of operations in the abstract schedule is determined by the

implementation once all the QEnter operations to be performed by a given transaction arc known. Thus. this

implementation has the benefit of more knowledge about transactions than has the standard implementation.
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iI'vuioln shcdUih list upcration- in tLhe order in which thcy are actually invoked, rather than in order of

their abstract effects 4. For example. the 'ollowing is a possible invocation schedule for a Queue implemented

using the block-insertion technique described above:
T2 : QEnter(Q.Y)
Ti: QEnter'(Q,X)
T3 : QRemove(Q)

If Tl commits before T2' the implementation reorders the two QEnter operations, resulting in the abstract

schedule:
Ti: QEnter(Q, X)
T2: QEnter'(Q, Y)

T3 : QRetnove(Q)

'he mapping between invocation schedules and abstract schedules is many-one; each invocation schedule

implements exactly one abstract schedule, but an abstract schedule may be implemented by multiple

invocation schedules. The synchronization mechanism used by an implementation determines a set of

invocation schedules, called legal schedules, that are permitted by the implementation. The implementor

tausk show diac aii legal invocation schedules map to consistent abstract schedules. To prevent cascading

aborts as well, implemcntors must usc a synchronization strategy that restricts the set of legal invocation

schedules to those that map to abstract schedules that are in the intersection of the consistent and cascade-free

sets.

5 Orderability of Groups of Transactions

The preceding section described how the standard specification of an abstract type, which only seeks to

characterize the type's invariants and the postconditions for its operations, can be augmented with an

interleaving specification that describes the local synchronization properties of objects. In this section we

broaden our focus from the properties of the typed objects that are manipulated by transactions to the

properties of entire transactions. We first examine how to generalize the definition of consistent abstract

schedules to schedules that include operations on more than one object type. and then consider how ordering

properties of groups of transactions can be used to show their correctness.

4It s assumed that the actual concurrent execution of the transactions can be mode!ed by a linear ordering of their component
operations. This requires that the primitive operations be (abstractly) atomic. In the multiprocessor case, all linearizations of operations
that could occur simultaneously yield distinct invocation schedules.
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5.1 How the Specifications of Multiple Types Interact

Guaranteeing orderability with respect to the proscribed relations of a collection of individual types is not

sufficient to ensure global ordering properties or transactions, such as serializability. Consider the following

schedule, which contains transactions that operate both on QuCucs and )irectories. Each of these types

preserves orderability with respect to the union of all significant dependencies for the individual type, in

order that transactions involving the type may poicntially be seriAlized. I lowe~er, this propelty alone does

nut guarantee serializability of the transactions. For example, tie following schedule is not serializable:
T,: QEnter(Q,X)
T2: QEnter(Q,Y)
T2: Dirlnsert(D, "A", Z)
T: DirDelete(D, "A")

l.et <,ir stand for the <i2uD4uDuD 1 relation, defined earlier for type l)ircctory. Let (Q stand for the

< Dy relation, dcIcd earlier for Queues. Although the schedule is orderable with respect to

{<Dir' <Q }. it is not serializable. To achieve serializability, the Queue and Directory types must cooperate to

preent cycles in de relation {<DiruQ}. The schedule is not orderable with respect to this compound

dependency.

This examnple indicates how to generalize the definition of consistency to apply to abstract schedules

containing operations on multiple types. Assume the interleaving specification for type Y, guarantees

orderability with respect to {<D1}, the interleaving specification for t.pe Y2 guarantees orderability with

respect to {<D2}, etc. The set of consistent abstract schedules involving types Y1, Y2, ... Yn is defined as those

abstract schedules that are orderable with respect to {<DlUD2u .. UDn Ihe union of the proscribed
dependency relations of the individual types. A set of types whose implementations satisfy this property is

called a set of cooperative types.

The need for cooperation among types does not necessarily imply that whenever a system is extended by

the definition of a new type, the synchronization requirements of all existing types must be rethought. When

designing a system, however, the implementors of cooperative types must first agree on a synchronization

mechanism that is sufficiently flexible and powerful to meet all of their requirements. A poor choice of

mechanism for fundamental building-block types will have an adverse effect on the entire system. Section

6 describes a mechanism based on locking that permits highly concurrent implementations of a large variety

of shared abstract types.
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5.2 Correctness of Transactions

When all of the types involvcd in a group of" transactions cooperate to preserve an ordering property

equivalent to serializability, it is easy to show that the correctness of transactions is not affected by

concurrency. Because transactions are completely isolated from one another, a transaction can be proven

correct solely on the basis of its own code and the assumption that the system state is correct when the

transaction is initiated.

It is much more difficult to prove the correctness of transactions when they include operations on types that

permit non-serializable interaction among transactions. One must consider the possible effects of interleaving

each transactio n with any other transaction, subject to the constraints of whatever ordering property is

guaranteed by the collection of types. Nevertheless, in many practicai itJations. this task should not be

insurmountable. We give two examples of situations where it is possible to make useful inferences about the

behavior of transactions even though they preserve an ordering property weaker than scrializability.

l!.sers often invoke the l)irl)uip operation on a Directory when they are "just looking around." In such

cases, users would like to see a snapshot of the Directory's contents at an instant when the status of each entry

is well defined, but they don't care what happens to the Directory thereafter. If all Directory operations

attempt to enforce serializability, using Dirl)umnp in zhis way could greatly restrict concurrency. This problem

can be alleviated by modifying the specification of the Directory type to permit limited non-serializable

behavior.

Suppose dependency relations containing D9: Ti:D -+ ' :M(a) are removed from the set of proscribed

relations for the modified Directory type. That is, the interleaving specification for Directories only requires
orderability with respect to {<D UDIuD l instead of {<D 2 .D4 UDsuD9uD 11} Although this modified

Directory allows non-scrializable behavior, one can still guarantee that certain consistency constraints are not

violated. For example, if a transaction replaces a group of entries in a Directory, one can still prove that no

other transaction doing DirLookup operations will observe an incompatible collection of entries.

The WQueue of section 4.3 provides another example of a useful type that permits non-serializable

interaction of transactions. Although the ordering property for WQucues is weaker than the one for strict

Queues, some interesting properties can still be deduced based only on orderability with respect to f<D3}.

Consider two transactions, T, and T2, and two WQueues, Q1 and Q2. Suppose T1 is intended to move all
elements from Q1 to Q2 and T2 is intended to move all elements from Q2 to Q1- If these transactions are rmn

concurrently, the elements should all wind up in one WQueue or the other. This can be guaranteed only if

<D3 is proscribed; otherwise elements could be shuffled endlessly between Q1 and Q2 and the transactions

might never terminate.
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6 A Technique for Synchronizing Shared Abstract Types

We have dcereloped a formalism for speciCying the synchronization of operations on shared abstract types,

and interleaving spccifications for some example types have been given. This section outlines a

synchronii'ation mechanism that can be used in implementations of these types. While we do not describe a

particular syntax or implementation tbr this mechanism, we show how it can be used to prevent cascading

aborts and control the interleaving ot operations. We show how it provides the coopera1tion among tN pes that

is needed to preserve scrializability or a weaker ordering property of a group Of trans.:ctions. Implementation

sketches for the shared abstract t, pc; specified in Section 4 are given as examples of its use.

As indicatcd in Section 4.4. Lhe implementor of a type must take the following steps to demonstrate the

correctness of an implementation:

I. characterize the set of legal in\ocation schedules, that is, those invocation schedules allowed by
the ;ynchronization mechanism used in the implementation.

2. give a mapping from invocation schedules to abstract schedules, and prove that the
implementation carries uut this mapping.

3. prove that every legal invocation schedule yields a consistent abstract schedule under this
mapping.

This three-part task s simplest for implementations that are idealized in that they do not reorder operations

on objects. Under these conditions. inocation schedules and abstract schedules are equivalent, and the

second step in this process can be eliminated. The examples in this section discuss such idealized

implementations of types.

6.1 Type-Specific Locking

The proposed synchronization technique is based on locking, which is used in many database systems to

synchronize access to database objects. There are many variations on locking, but the same basic principle

underlies them all: ,efore a transaction is permitted to manipulate an object, it must obtain a lock on the

object that will restrict further access to the object by other transactions until the transaction holding the lock

releases it.

Locking restricts the formation of dependencies between transactions by restricting the set of legal

invocation schedules. Whenever one transaction is forced to wait for a lock held by another, the formation of

a dependency between the two transactions is delayed until the first transaction releases the lock. Under the

well-known two-phase locking protocol [Eswaran 761, no transaction releases a lock until it has already claimed

all the locks it will ever claim. This has the effect of converting potential cycles in dependency relations into
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deadlocks iMtead. IhesC ca, be detected. and becausc ro dependencies have yet been aliowed to form, cither

transaction can he aborted without affecting the other.

Locking is a conservatie policy, because it delays the formation of any dependency that is part of a

proscribed relation, not just those that C% Cntually lead to cycles. This is not as significant a disadvantage as it

might appear. hi'ex er. became formation of those dependencies that transf'er infonnation (see Section 3.3)

must be delayed anrywa\ to prevent cascading aborts. In fact, the eCn nore restrictive strategy of holding

certain locks until end-of-transaction must often bc employed to er.sure that schedules are cascade-free.

Furthermore, it is !he conservative nature of locking protoco;ls that makes them a suitable mechanism for sets

of coopertike types. ih prexenting the formation of any dcpcndencies local to a single object, cycles in

proscribed relation,; that involve multiple types are automatically avoided without explicit communication

between type managers. [his is an important advantage, because it alloxs type managers to be constructed

mdcpendently, as long as they correctly prevent the local formation of dependencies.

The chief disadvantage of many locking mechanisms is that they sacrifice concurrency by making minimal

ue of seiiantic knowledge about the objects being manipuLated. The simplest locking schemes use only one

type of lock, and hence cannot distinguish between significant and insignificant dependencies. Read/Write

locking schemes use some semantic informntioii, but are not flexible enough to take advantage of the extra

concurrency specifiable in terms of type-specific dependencies. It has been shovn [Kung 791 that two-phase

locking is optimal trgdcr such conditions of limited semantic knowledge, but much more concurrency can be

obtained if more semantic infonnation is used. The locking technique described here generalizes the ideas

behind Read/Write locking. It permits the definition of type-specific locking rules that reflect the

interleaxing specifications of individual data types. More restrictive type-specific locking schemes have

previously been investigated by Korth [Korth 83].

Two observations can be made concerning type-specific dependencies. First, they specify the way in which

type-specific operations on behalf of different transactions may be interleaved. Analogously, the generalized

locking scheme requires the definition of typc-specific lock classes, which correspond roughly to the

operations on the type. Second, in addition to the operations, the dependencies reflect data supplied to the

operations as arguments or data that is otherwise specific to the particular object acted upon. Therefore, an

instance of a lock in the generalized locking scheme consists of two parts: the type-specific lock class and

some amount of instance-specific data. it is the inclusion of oata in the lock instance that differentiates our

technique from Korth's. We use the notation {LockClass(data)} to represent an instance of a lock.

Once the lock classes for a type have been defined, a Boolean function must be given that specifies whether

a particular new lock request may be granted as a function of those locks already held on the object. In
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accordance ,Aidh the practice i database literature, this function will be represented by a lock compatibility

h11- Ou\ Lhose locks held by uther transacli:ons need be checked for compaibility: a new lock request is

aiw a%,: compatible %k ith other locks held by the same transaction.

To complete the description of a t pe's locking scheme, one must specify the protocol by which each of the

t. pes operations acquires and reiclescs locks. ,\lthot:gh two-ph;ise hcking can be used with ',pc-spccific

lock,,. the lock ins p1oLucol may also e type-specific.. A onifonn two-phase protocol is simplest to understand.

but the added fleihility of type-speihe protocols can allow increased concurrcncy. The exact nature of a

t pc-specific protocol depends not on!y on tie semantics of the t pe. but also on the particular rcpresentation

and muplemcntation chosen.

6.2 Directories

A simple idealited implementation of the Director, type: specified in Section 4.1 illustrates the basics of

type-specific locking. In this example, it is assumed that the Directory operations have been implemented in

a ,traightforAard fashion with no attempt at internal concurrency. It is further assumed that the operations

act under the protection or'a monitor or other mutual exclusion mechanism during the actual manipulation of

Directory objects. i.ocking is used exclusively to control the sequencing of Directory operations on behalf of

multiple transactions. The locking and mutual exclusion mechanisms cannot be completely independent,

however, because mutual exclusion must be released when waiting for a lock within the monitor. This is a

standard technique in systems that use monitors for synchronization [Hoare 74].

Because the mapping from invocation schedules to abstract schedules is trivial for this implementation, the

second step of the validation process is eliminated. The discussion of the locking scheme for Directories

therefore focuses on the first and third steps: informal characterization of the set of legal schedules, and

comparison of this set with the set of consistent schedules.

As was noted in Section 4.1, the operations for the Directory data type can be divided into three groups:

" Modify operations, that alter the particular Directory entry identified by the key string ar.

* Lookup operations, that observe the presence, absence, or contents of the particular Directory
entry identified by the key string a.

" Dump operations, that observe properties of the Directory that cannot be isolated to an individual
entry.

Corresponding to these groups, three lock classes can be defined:

* {DirModify(a)}: To indicate that an incomplete transaction has inserted or deleted an entry with
key string a.
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* I l)irl .ookup(uj)1 1o mwdcatc that an incomplete transaction has attempte)(d to obscrv e the entry
,Aith key string a.

" JI)irlunip: To indicate thatL anf incomplete transaction has performed a l)irl ump of the entire
directory.

The lock comipatibility table for Dircctorics can be found in Table 1. Since ,here are a potentially infinite

number of string-s, the s mnbol:; a and or ar-c used to reprecsenti two iirhitrary nuil-identical Strings.

Lock Yield

I)irModify(a) 1)irLookup)(a) I)irflunp

Lock Requesuzd lDir.lodify(ar) No No No
l)irilodify(a') OK OK No
lDirf.ookup(a) No OK OK
lDirlookup(a') OK OK OK

Diflurnp No OK OK

Table 1: Lock Compatibility Tablc for Dircctorics

Each entry in this table reflects the nature of one of the type-specific dependency relations for Directories.

Compatible entries rep-,cscnt dependency relations in which cycles are allowcd to occur: for example. the

enuiv in row 2. coitimn 2 is "OK" becauIse Cccs ire permitted in the <\j(U) M(ff) dcpendency relation.

Incompatibl-c entries reflect proscribed relations, such as the entry in row 1, column 2. which is due to the

proscribed < (u - M(G) relation.

The protocol used by the Directory operations for acquiring and releasing locks is as follows:

" IDirlnscrt or 1)irDeletc operations that specify the key string a obtain a {DirModlif)(cr)) lock on
the D~irectory. If the operation succeeds, the lock is held unfti end-of- transaction. If the operation
fails, the lock is converted to a {lirLookup(ar)} lock, which is held until end-of- transaction.

" DirLookup operations that specify the key string or obtain a {DirLookup(a)j lock on dhe Directory
that is held until end-of-transactioni.

* DirDump operations obtain a fIDirDumnp} lock on the Directory that is held until end-of-
transaction.

The following example demonstrates how the components of the locking scheme interact. Suppose a

Directory D is initially empty. If a transaction T, performs the operation DirDeletc(1), "Zebra"), this

operation will fail by returning not found and leave a {DirLookup("Zehra')} lock on the Directory until the

termination of T. Now suppose a second transaction, T2, performs the operation

Dirlnscrt(D), "Zebra", capa). According to the protocol, DirlInsert must first obtain a {Diri1/1odify('Zcbra")}

lock. Becauise the dependency relation < a Moa is proscribed, this lock is incompatible with the
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{I iriookup("Zcbra'")] lock already he!d by 1T (se. row i, column 3 of the compatibility table). Thereforc,

T 2  ill be blocked. If'' subsequently becomes l)locked while attempting to access an object already locked

by 1,. a deadlock will Occur. Both transactions are tlhn blocked attempting to form dependencies that are

part of proscribed relations. AlthAugh these relations may invoh e different objects, or even different types, a

cycle in the union of the two relations is effcctively prevcnted. This is cxacly the behavior required to

achic\e consistency among cooperatic types. On the other hand. if 1 completes ,succCssFully de lock is

released and the dependency of T 2 on TL. is permitted to form. Since the L(a) - M(jr) dependency cannot

lead to cascading aborts, one may conclude (after the fact) that dcla ing '2 was unnecessary.

li contrast, a transaction T[3 that performs the operation l)irinsert(l), "Girafre",capa) need not be blocked,

because the < a) -, %(a') dependency relation is not proscribed. Accordingly, row 2, column 3 of the

compatibility table indicates that a Il)irModifN("Giraffe")1 lock is compatible with a {Dirl,ookup("Zehra")-

lock.

Although not a formal proof, this example characterizes the set of legal schedules permitted by the

implementation, and shows how the lock classes, compatibility table, and locking protocol combine to

guarantee that the legal schedules correspond to the consistent schedules defined in the last section. They

capture the idea that, for this abstract data type. synchronization of access depends on the operations being

performed. the particular entries in the Directory they attempt to reference, and their outcome. Because locks

are on Directory objects, not components of directories, the technique also handles phantoms: entries that are

mentioned in operations but are not present in the Directory.

6.3 Strictly FIFO Queues

Type-specific locking can also be used in implementations of the Queue data type of Section 4.2. As in the

preceding example, assume a idealized implementation operating under conditions of mutual exclusion. To

implement strictly FIFO Queues supporting only QEnter and QReniove operations, two lock classes are

sufficient: {QEnter(o)} and {QReriove(a)}. As in the case of Dircetorics, locks on Queues identify the

particular entry to which the operation requesting the lock refers. Since Queue entries are not identified by

key strings, it is assumed that at QEnter time, each element is assigned an identifier unique to the Queue

instance. These identifiers correspond to those used in defining the dependency relations. Thus, a

{QEnter(a)} lock indicates that an element with identifier o has been entered into the Queue by an

incomplete transaction. Likewise. a {QRcnove(ci)} lock indicates that the element with identifier a has been

removed form the Queue by an incomplete transaction.

The protocol for the Queue operations is:
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" QLnter operzitions itst obItai a {Q c"I.o')i lock, where a is tie newly-assigned idcntifiej for
the entry to be added. h'liv; lock is held until end-of-transaction.

" Qemosc. operations must obtain a QRcmoine(a)l lock, wlhere a is the identiier of the entry at
the head of the Queue. This lock is held until end-of-transaction. Note that obtaining a
{QReiiove(a)} lock does not necessarily imply that an entry a is actuWlV in the Queue, because
the transaction that made the entry may have since aborted. If so. the Qlkmove operation must
request a {QReiiioie(a')} lock on the new headmost entry, a'.

Table 2 shows the lock compatibility table for Queues. As usual, the symbols o and a' represent the

identifiers of two different elements. Because the element identifiers are unique, certain situations (e.g.

attempting to enter an element with the samc identifier as an element already removed) cannot occur. The

compatibility function is undefined in these cases, so the table entries are marked 'NA' for 'Not Applicable'.

Lock Held
QEnter(a) QReniove(a)

L.ock Rcquested QEnter(a) NA NA
QEnter(a') No OK

QRemove(a) No NA
QRcinove(a) OK No

rable 2: Luck Compatibility Table for Queues

The lock compatibility table mflccts the limited concurrency of this type. Once a QRemove operation has

retrieved the entry with identifier r, some entry with identifier a' becomes the head element of the Queue.

But other transactions will be blocked trying to obtain the {QReinove(a')} lock needed to remove it, until the

first transaction completes. Multiple QEnter operations on behalf of different transactions interact in the

same way. The incompatibility of {QRemove(a)} with {QEnter(a)} ensures that an uncommitted entry

cannot be removed from the Queue, thereby eliminating a potential cause of cascading aborts.

6.4 WOueues

For a comparable idealized implementation of WQueues supporting only WQEnter and WQRemove, the

same lock classes may be used as for FIFO Queues. The major difference between the two types shows up in

the lock compatibility function, given by Table 3. To reflect the allowability of interleaved WQEnter

operations by different transactions, the table entry in row 2, column 2 defines {WQEnter(a)} and

{WQEnter(cr)} locks to be compatible. Similarly, the entry in row 4, column 3 now permits multiple

transactions to perform WQRcmove operations. The only remaining restriction is the one in row 3, column 2

that prevents uncommitted entries from being removed. This prevents cycles in the proscribed <r1X) - R(a)

dependency reladon and, because the lock is held until end-of-transaction, also prevents cascading aborts.
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lock Held
W\QEnter(o) WQRenlove(cr)

ock Requested \V*QEnter(a) NA NA
WQEnter(a') OK OK
VQllCnove(o) No NA
VQRenove(a') OK OK

l'abl 3: L.ock Compatibilit Table tor WQucucs

The locking protocol for the WQucuc operations is substantially the same as the one for the Queue

operations. The only difference is that a WQReniove operation that is unable to obtain the required

{W\QRcmoela)} lock on thc element at die head of the WQucuc does not block. Instead, WQRemove

searches down the WQtLeue for some other element with identifier a', for which a {VQReniove(cr')} lock can

be obtained. This reflects the property of WQucucs that permits elements farther down the WQucue to be

removed when the head element is uncommitted. If no element can be found, the operation is blocked until

an inserting transaction commits.

6.5 Summary

The examples in this section have shown how type-specific locking can be used for synchronization in
implementations of several data types. The examples show how locking can be used to prevent cyclzs in

proscribed dependency relations, including cycles containing several types of objects. They also indicate how

locking can be used t,, prevent cascading aborts.

A full discussion of the syntax and implementation of type-specific locking mechanisms is beyond the scope

of this paper. Further work is needed to determine the specific primitives required for definition of new
object types, locking, unlocking, conditional locking, etc. Another area requiring further study is the

relationship between the locking mechanism and other synchronization mechanisms that are used for mutual

exclusion and to signal events. It appears, however, that implementation of a type-specific locking

mechanism is often no more complex or expensive than implementations of standard locking. Unlike

predicate locking schemes [Eswaran 76], the set of locks that apply to a particular object can easily be

determined. It is also not difficult to determine what processes may be awakened in response to an event such

as transaction completion.
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7 Summary

This paper has been concerned with synchronizing transactions that access shared abstract types. In cur

model, four properties distinguish such types from others:

" Operations on them arc permanent.

* They supp~rt failurc atomicity of transactionls.

" They do not permit cascading aborts.

T 'hey contribute to preserving ordering properties Of groups of transactions.

These properties are not independent, and the mechanisms that are used to achieve them are therefore related

as well.

Schedules and dependencies are useful in understanding die interaction between concurrent transactions.

The well-known consistency property of serializability can be redefined as a special case of orderability with

respect to a dependency relation. The specific dependency relation depends on how much semantic

knowledge is available concerning operations on objects. When Read operations are distinguished from

Write operations, serializability requires orderability with respect to a less restrictive dependency relation than

when this distinction is not made. Dependencies can also be used to characterize schedules that are not prone

to cascading aborts.

Additional type-specific semantic knowledge about operations can allow additional concurrency. The

interleaving specifications for Directories and Queues developed in Sections 4.1 and 4.2 were stated in terms

of orderability with respect to type-specific dependencies. To increase concurrency further, the WQueue

sacrifices serializabili.:' while preserving orderability with respect to a less restrictive dependency. When

several abstract types are combined in a transaction, orderability must be guaranteed with respect to the

relation that is the union of the proscribed relations of the individual types.

Section 6 described a locking mechanism for implementing the synchronization required by the types

described in Section 4. By allowing locks that consist of a type-specific lock class and instance-specific data,

the mechanism provides a powerful framework for using type-specific semantics in synchronization. 'This

mechanism is suitable for use in transactions containing multiple types, and it can also be used to prevent

cascading aborts. The implementation of' Directories shows how type-specific locking permits a uniform

treatment of the problem of phantoms. I.ocks need not be directly associated with particular components of

objects. which facilitates the separation of synchronization from other type representation issues. The

examples of various Queue types show the mechanism's flexibility.
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This paper has not provided a complete discussion of the issues involved in the specification and

implementation of shared abstract types. For example, we have not discussed the construction of compound

shard abstract types, which use other shared abstract types in their implementation. (However. Schwarz

[Schwarz 82] gives an example of this.) In addition, we have hardly mentioned recovery considerations,

though we believe logging mechanisms as described by I.indsay [Lindsay 79] can be extended to meet the

needs of shared abstract t\ pCs. Recovery is discussed more fully in a related paper [Sch ,arz 83]. Finally, we

have not discussed specific algorithms for coping with deadlocks.

Clearly, the definition and implementation of shared abstract types is more difficult than the definition and

implementation of regular abstract types. However, once these types are imphlnented, programmers can

construct arbitrary transactions that invoke operations on the types. These tranzactions should greatly

simplify the construction of reliable distributed systems. Though this paper has focused entirely on

synchronization, we believe that this topic is central to understanding how transactions can be used as a basic

building block in the implementation of distributed systems.
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